Reviews

Advances in the gas-phase synthesis of organochloro derivatives of silicon, germanium, and tin via dichlorosilylene*

E. A. Chernyshev,* N. G. Komalenkova, and V. G. Bykovchenko

State Research Center of the Russian Federation "State Scientific-Research Institute of Chemistry and Technology of Organoelement Compounds." 38 sh. Entuziastov, 111123 Moscow, Russian Federation. Fax: +7 (095) 273 1323. E-mail: chteos@chteos.extech.msk.su

The results of studies carried out in the past five years on the gas-phase synthesis of organochlorosilanes, pentachlorodisiloxanes, organochlorogermanes, and organochlorostannanes at 400-550 °C in the presence of hexachlorodisilane or 1,1-dichloro-1-silacyclopent-3-ene as sources of dichlorosilylene are summarized.

Key words: alkylchlorosilanes, alkenylchlorosilanes, pentachlorodisiloxanes, alkenylchlorogermanes, arylchlorogermanes, organylchlorostannanes, gas-phase synthesis, hexachlorodisilane; dichlorosilylene, dichlorogermylene, dichlorostannylene.

It has been previously shown^{1,2} that hexachlorodisilane is the most promising source of dichlorodisilane in the gas phase. Its thermolysis occurs at 400-550 °C according to the scheme

$$Si_2Cl_6 \longrightarrow :SiCl_2 + SiCl_4.$$
 (1)

The mechanism of Si₂Cl₆ decomposition was studied by the matrix isolation technique,3 and data on the kinetics⁴ and thermodynamics⁵ of this reaction have been obtained. The reactions of dichlorosilylene with 1,3-dienes and various chloroarenes were studied in detail, and experimental data on the chemistry of :SiCl₂ were reviewed. 1,2,6,7

In this review, we systematized and generalized the results of our recent works devoted to the study of the reactions of :SiCl2 with alkyl chlorides, alkenyl chlorides, and oxo compounds, which practically have not been studied previously. In addition, we attempted to use :SiCl₂ for the generation of other carbene analogs (:GeCl₂ and :SnCl₂). The synthesis of organoelement compounds based on the reactions of :GeCl₂ and :SnCl₂ is also considered.

Synthesis of organochlorosilanes

Synthesis of alkylchlorosilanes

Alkylchlorosilanes were obtained by the reactions of alkyl chlorides with Si₂Cl₆ in the gas phase at 500 °C.8.9 Bis(trichlorosilyl)methane (2) and bis(trichlorosilyl)ethane (3) along with alkyltrichlorosilanes (1) are the products of the reaction (Table 1).

$$\mathsf{AlkCl} + \mathsf{Si}_2\mathsf{Cl}_6 \longrightarrow \mathsf{AlkSiCl}_3 + \mathsf{CH}_2(\mathsf{SiCl}_3)_2 + \mathsf{Cl}_3\mathsf{SiCH}_2\mathsf{CH}_2\mathsf{SiCl}_3$$

Dedicated to the memory of Academician M. E. Vol'pin timed to his 75th birthday.

Table 1. Conditions and products of the reactions of Si₂Cl₆ with alkyl chlorides (500 °C, reaction duration 25-30 s)8

RCI	Si ₂ Cl ₆ : RCI*	Yields of products (%)			s (%)
		1	2	3	1+2+3
EtCl	0.7 : 1.0	50	0.04	0.06	50.1
BuCl	2:1	32	8.2	2.3	42.5
PrCl	2:1	12	16	4.8	32.8
HexCl*	2:1	0.5	22	12	34.5

Molar ratio.

The insertion of :SiCl₂ (generated from Si₂Cl₆) into the C-Cl bond of alkyl chloride is the main stage of the process

The reaction is highly exothermic; the thermal effects ($\Delta H^{\circ}_{298}(g)$) for methyl- and ethyl chlorides are -343 and -312 kJ mol⁻¹, respectively. Vibration-excited molecules of AlkSiCl₃ are formed in the reaction.8

The following scheme including the formation of vibration-excited molecules (the excitation energy is 300-340 kJ mol⁻¹) of alkyltrichlorosilanes of type 4 and their subsequent transformations was suggested.8

$$RCH_2CH_2CI + :SiCI_2 \longrightarrow RCH_2CH_2SiCI_3^*$$
 (2)

$$4 + Si_2Cl_6 - 2 \cdot SiCl_3 + 1$$
 (3)

$${}^{\cdot}CH_{2}SiCI_{3} + {}^{\cdot}SiCI_{3} \longrightarrow CI_{3}SiCH_{2}SiCI_{3}$$

$$2$$

$$(8)$$

$${}^{1}\text{CH}_{2}\text{CH}_{2}\text{SiCl}_{3} + {}^{1}\text{SiCl}_{3} \longrightarrow {}^{1}\text{Cl}_{3}\text{SiCH}_{2}\text{CH}_{2}\text{SiCl}_{3}$$
 (9)

$$2 \cdot CH_2SiCl_3 \longrightarrow 3$$
 (10)

R = H, Me, Et, Buⁿ

Alkyltrichlorosilanes can be transformed in two directions. The first direction includes the deactivation of molecule 4 due to collisions with other molecules. Reactions (3) and (4) are evidently the most significant. Colliding with the hexachlorodisilane molecules, the

excited molecules of 4 transfer a portion of their excessive energy and favor the decomposition of hexachlorodisilane. The decomposition of a Si₂Cl₆ molecule in reactions (3) and (4) requires 200 and 320 kJ mol⁻¹, respectively.5

The second direction is the decomposition of vibration-excited molecules of 4 to free radicals in reactions (5)-(7). It is noteworthy that the energies of the C-C $(320-350 \text{ kJ mol}^{-1})^{10}$ and Si-C (340-355 kJ mol⁻¹)^{10,11} bond cleavage are close. The 'CH2SiCl1 and 'CH2CH2SiCl3 free radicals appearing in reactions (5) and (6) react with the 'SiCl₃ radicals (reactions (8) and (9)) to form chloroalkanes 2 and 3. Compound 3 can be evidently obtained also due to the recombination of the 'CH₂SiCl₃ radicals (reaction (10)).

Thus, the ratio of compounds 1-3 formed is mainly determined by the behavior of the excited molecules of 4. If they are rapidly deactivated and transit from the excited state to the ground state, the mixture of products predominantly contains alkyltrichlorosilanes. This type of transformations is observed during the synthesis of the lowest trichlorosilanes of the homologous series: EtSiCl₃ and PrSiCl₃ (see Table 1). If the rate of decomposition of the excited molecules of 4 is higher than the rate of their deactivation, compounds 2 and 3 are the predominant products. This situation is characteristic of the synthesis of the RSiCl₃ compounds with bulky radicals, for example, R = Hex (see Table 1). Evidently, the reaction of cyclohexyl chloride with :SiCl2 gives cyclohexyltrichlorosilane only in a small (6-11%) yield due to the same reason.9

Reactions of :SiCl2 with chlorosubstituted methane derivatives

The reactions of :SiCl₂ with polychloromethanes are interesting. 12,13 The reaction of CH₂Cl₂ with :SiCl₂ at 620 °C is known¹⁴ to give only one product, bis(tri-chlorosilyl)methane (55% yield). The study of this process in detail shows 12 that two consecutive-parallel reactions proceed at 400-520 °C to form chloromethyltrichlorosilane (5) and bis(trichlorosilyl)methane (2).

$$CICH2CI + :SiCI2 \xrightarrow{k_{11}} CICH2SiCI3$$

$$5$$

$$5 + :SiCI2 \xrightarrow{k_{12}} CI3SiCH2SiCI3$$

$$(11)$$

$$\mathbf{5} + : \operatorname{SiCl}_2 \xrightarrow{k_{12}} \operatorname{Cl}_3 \operatorname{SiCH}_2 \operatorname{SiCl}_3 \tag{12}$$

The ratio between the rate constants of these reactions was determined, 12 and the maximum yield (Y_{max}) of the intermediate compound 5 was calculated at different temperatures:

T/°C	404	440	501
k_{12}/k_{11}	1.08	1.18	1.80
$Y_{m,n}(5)$ (%)	35.4	33.8	26.6

The yield of compound 5 at 400–440 °C (32–34%) is higher than that at 520 °C (26%). In the same work, 12 side reactions of CH_2Cl_2 pyrolysis were considered. The pyrolysis products react with :SiCl₂ to give tris(trichlorosily1)methane 6.

Compound 6 is also formed in the gas-phase reaction of CHCl₃ with :SiCl₂ at 450-550 °C.¹³ The products of this reaction contain bis(trichlorosilyl)methane as well.

CHCl₃ + :SiCl₂
$$\longrightarrow$$
 CH(SiCl₃)₃ + Cl₃SiCH₂SiCl₃
6 2
(25–34%) (10–30%)

The reaction of :SiCl₂ with CCl₄ proceeds in a different way. ¹³ Evidently, the primary product (7) of the insertion of :SiCl₂ into the C—Cl bond of the starting compound is thermally unstable and, according to the published data, ¹⁵ can decompose via α -elimination (Eq. (13)) to form :CCl₂. Therefore, no insertion of another :SiCl₂ molecule into the C—Cl bond of carbon tetrachloride occurs.

$$CCl_4 + :SiCl_2 \longrightarrow CCl_3SiCl_3 \longrightarrow :CCl_2 + SiCl_4 \quad (13)$$

$$7 \quad :SiCl_2$$

$$CCl_4(SiCl_4)_2$$

Bis(trichlorosilyl)acetylene (8) is the main product of the gas-phase copyrolysis of Si₂Cl₆ with CCl₄. This compound is most likely formed in the reaction of :SiCl₂ with tetrachloroethylene observed in the reaction products. The latter can appear due to dimerization of :CCl₂, which is obtained in reactions (13) or (14).¹⁶

$$CCl_4 \longrightarrow :CCl_2 + Cl_2$$
 (14)
 $2:CCl_2 \longrightarrow CCl_2 = CCl_2$

Compound 8 can probably be formed due to the following transformations:

$$CCI_{2}=CCI_{2}+2:SiCI_{2} \longrightarrow \begin{bmatrix} CI & CI \\ CI_{3}SiC = CSiCI_{3} \end{bmatrix} \xrightarrow{:SiCI_{2}}$$

$$CI_{3}SiC = CSiCI_{3}+SiCI_{4}.$$
8

It follows from this scheme that excess Si_2Cl_6 in the starting mixture is required for preparing acetylene 8. In fact, at 500 °C and the molar ratio Si_2Cl_6 : C_2Cl_4 = 4:1, the yield of alkyne 8 is 42%. When the molar ratio of the reagents decreases to 2:1, the yield of compound 8 decreases to 26%. ¹³

Table 2. Influence of the reagent ratio and the temperature of the reactions of Si₂Cl₆ with alkenyl chlorides on the yields of alkenyl-chlorosilanes (RSiCl₃)^{17,18}

RCI	Si ₂ Cl ₆ : RCl ^a	T/°C	Yield of RSiCl ₃ (%)
AllCl	1:2	500	49.0
AliCi	1:1	500	64.4
AllCl	2:1	500	81.0
VinCl	1:1	500	55.7
VinCl	2:1	500	63.0
VinCl	1:1	550	44.6
C ₄ H ₇ Cl ⁴	b 1:1	520	31.8
C4H7Cl		520	53.4

^a Molar ratio.

Synthesis of alkenylchlorosilanes

Unlike alkyl chlorides, alkenyl chlorides contain not one but two reaction centers (C—Cl and C=C bonds) at which the attack of :SiCl₂ can occur. The studies for allyl chloride,¹⁷ vinyl chloride,¹⁷ and methallyl chloride¹⁸ as substrates have shown that :SiCl₂ is predominantly inserted into the C—Cl bond.

The yields of alkenylchlorositnes under different reaction conditions are presented in Table 2. The maximum yield (81%) is achieved when AllCl is used.

Alkenyltrichlorosilanes are obtained in reactions (2)—(4), and the thermal effect for the formation of excited RSiCl₃* molecules (Eq. (15)) virtually does not differ from the thermal effect of reaction (2) (the enthalpy $\Delta H^o_{298}(g)$ of reaction (15) for AllCl is equal to -313 kJ mol⁻¹).¹⁷

$$RCI + :SiCl_2 \longrightarrow RSiCl_3^*$$

$$10$$
(15)

$$R = CH_2=CH, CH_2=CH-CH_2, CH_2=C(Me)-CH_2$$

Thus, the reactions of :SiCl₂ generated from Si₂Cl₆ with alkenyl chlorides also result in vibration-excited molecules of 10, which can either be stabilized or decompose.

Free radicals are generated in the decomposition of highly excited molecules of AllSiCl₃, VinSiCl₃, and (2-methylprop-2-enyl)trichlorosilane. Their subsequent interactions with each other, 'SiCl₃ radicals, and :SiCl₂ lead to various organosilicon compounds. ^{17,18}

For example, an additional five compounds are formed in yields from 0.3 to 10.4% during the synthesis of vinyltrichlorosilane: ¹⁷ 1,1-dichloro-1-silacyclopent-3-ene (11) and its trichlorosilyl derivatives (12), bis(trichlorosilyl)ethylene, trichlorophenylsilane, and 1,1,3,3-tetrachloro-1,3-disilacyclohex-4-ene (13).

The reaction of allyl chloride¹⁷ with Si₂Cl₆ gives six secondary products in 0.6—4.6% yields: bis(trichlorosilyl)-

^b Methallyl chloride (CH₂=C(Me)-CH₂Cl).

methane, allyldichlorosilyl(trichlorosilyl)methane, trichlorophenylsilane, and heterocyclic compounds 11—13.

Several secondary products are formed in yields from 1.2 to 13% in the reaction of methallyl chloride 18 with Si₂Cl₆, along with the main product chloro(2-methyl-prop-2-enyl)silane (see Table 2) and its isomer, trichloro-isocrotylsilane (5—9% yield). Bis(trichlorosilyl)methane, 1,1,1,5,5,5-hexachloro-1,5-disila-3-methylpent-2-ene, and bis(trichlorosilyl)benzene are the most interesting compounds among the secondary products.

Reaction of :SiCl2 with acetone

We studied the reaction of Si₂Cl₆ with acetone in the gas phase within the 520-560 °C temperature range at different ratios of the reagents. ¹⁹ The main reaction products were found to be hexachlorodisiloxane (14), 1-allyl-1,1,3,3,3-pentachlorodisiloxane (15), 1,1,3,3,3-pentachloro-1-vinyldisiloxane (16), and 1,1,3,3,3-pentachloro-1-vinyloxydisiloxane (17).

The influence of the reagent ratio was studied¹⁹ at 520 °C and the molar ratio Si_2Cl_6 : $Me_2CO = 1$: 2. Under these conditions, the maximum yield (33.5%) is observed for compound 15. When the reagents are taken in an equimolar ratio, the yields of compounds 15 and 16 are close (19.8 and 18.9%, respectively). Further increase in the content of Si_2Cl_6 results in an increase in the yield of $(Cl_3Si)_2O$ only (to 7.5%) and in a decrease in the yields of the other compounds. An increase in the reaction temperature up to 560 °C has a slight effect on the yields of the products.

18
$$\longrightarrow$$
 H₃C-CH=CH₂ + O=SiCl₂ (17)

$$O=SiCl_2 + SiCl_4 \longrightarrow Cl_3SiOSiCl_3$$
 (18)

$$Cl_3SiOSiCl_3 + :SiCl_2 \longrightarrow Cl_3SiOSiCl_2SiCl_3$$
 (19)

$$\begin{array}{c}
\mathbf{19} \longrightarrow \mathsf{Cl}_3\mathsf{SiO}\mathring{\mathsf{SiCl}}_2 + \mathsf{`SiCl}_3 \\
\mathbf{20}
\end{array} \tag{20}$$

$$H_3C-C-CH_3 \longrightarrow H_3C-C + CH_3$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$CH_2 = CH - CH_3 + CH_3 - CH_2 = CH - \dot{C}H_2 + CH_4$$
 (22)

$$CH_2 = CH - \dot{C}H_2 + 20$$
 —— $CH_2 = CH - CH_2 SiCl_2 OSiCl_3$ (23)

15
$$\longrightarrow$$
 CH₂=CHSiCl₂OSiCl₃ + :CH₂ (24)

$$H_{3}C-C' + 'SiCl_{3} \longrightarrow H_{3}C-C-SiCl_{3} \longrightarrow H_{2}C=CH-OSiCl_{3} \longrightarrow H_{2}C=CH-OSiCl_{3}$$

$$= 22$$
(25)

$$22 + O=SiCl_2 \longrightarrow CH_2=CHOSiCl_2OSiCl_3$$
 (26)

(Molecules of 18 and 19 formed in the vibration-excited state are marked by asterisks.)

The mechanism of the reaction of :SiCl₂ with acetone was not studied. It is assumed¹⁹ to be similar to that of the addition of :SiCl₂ to the double C=C bond and to include the formation of oxasilacyclopropane (23). The cleavage of the endocyclic Si—C bond accompanied by the migration of the H atom from carbon to silicon and the appearance of the C=C bond results in the formation of compound 18.

$$Me_{2}CO + :SiCl_{2} \longrightarrow Me - C - Me$$

$$23 \quad O$$

$$Me - \dot{C} - C - H$$

$$0 \dot{SiCl}_{2}$$

$$18$$

It is noteworthy that a product of type 18 is formed in the reaction of Mes₂Si: with acetone,²⁰ whereas a compound of type 23 with the oxasilacyclopropane structure was obtained in the reaction of Mes₂Si: with 1,1,3,3-tetramethylindan-2-one.²¹

It is most likely that compound 18 can also be formed due to the insertion of :SiCl₂ into the O-H bond of the enol form of acetone.

Compound 18 is evidently formed in the excited state, which usually appears when thermally generated dichlorosilylene is inserted into other bonds⁸ and, hence, decomposes to propylene and dichlorosilanone (reac-

tion (17)). The latter, as known,²² is easily inserted into the Si—Cl bonds of tetrachlorosilane to give hexachlorodisiloxane (14) (reaction (18)). The insertion of :SiCl₂ into the Si—Cl bond of siloxane 14 results in the excited product 19, whose decomposition gives free radicals 20 and 'SiCl₃ (reactions (19) and (20)). It is known⁵ that insertion of :SiCl₂ into the Si—Cl bond is accompanied by a heat liberation of ~200 kJ mol⁻¹.

Free radicals also appear in the thermal decomposition of acetone²³ (reaction (21)). Methyl radicals that formed in this reaction react with propylene according to Eq. (22) to give allyl radicals. It is noteworthy that the addition of methyl radicals to the double bond of propylene occurs considerably more slowly than the elimination of hydrogen according to Eq. (22), which is related to the difference in activation energies of these reactions (38.1 and 18.8 kJ mol⁻¹, respectively).²⁴

The recombination of allyl radicals with radicals 20 in reaction (23) results in compound 15. It is known²⁵ that during their thermal decomposition, allylsilanes of type 15 easily eliminate methylene and are transformed into vinylsilyl compounds (reaction (24)).

A stepwise scheme for the formation of compound 17 was suggested.¹⁹ The scheme included the recombination of the acetyl and 'SiCl₃ radicals and the appearance of an unstable compound 21, which isomerizes to trichlorovinyloxysilane (22). Then reaction (26) occurs to give compound 17 (2-6% yield).

Synthesis of organochlorogermanes

It has been shown²⁶ that dichlorosilylene can be used for the generation of dichlorogermylene according to the following scheme:

$$GeCl_4 + :SiCl_2 \longrightarrow [Cl_3GeSiCl_3] \longrightarrow SiCl_4 + :GeCl_2.$$

The dichlorogermylene thus obtained was used in the syntheses of aromatic and unsaturated organogermanium compounds.

Synthesis of arylchlorogermanes

The gas-phase methods for the synthesis of phenyl-trichlorogermane (~40% yield) and thienyltrichloro-

germane (~70% yield) by the reactions of GeCl₄ with chlorobenzene and chlorothiophene, respectively, in the presence of Si₂Cl₆ at 550 °C have been described. ²⁶ The authors of Ref. 26 found that Si₂Cl₆ initiates this reaction; in the absence of Si₂Cl₆, PhCl does not react with GeCl₄. Further studies showed ²⁷ that the reaction can also occur at a lower temperature (460–500 °C, Table 3). The following scheme for the synthesis of PhGeCl₃ was suggested: ^{26,27}

$$GeCl_4 + :SiCl_2 \longrightarrow SiCl_4 + :GeCl_2 \qquad (27)$$

$$\longrightarrow [Cl_3GeSiCl_3] \longrightarrow :SiCl_2 + GeCl_4 \qquad (28)$$

$$24 \longrightarrow :SiCl_3 + :GeCl_3 \qquad (29)$$

$$PhCl + :GeCl_2 \longrightarrow PhGeCl_3$$
 (30)

$$PhCl + GeCl_3 \longrightarrow GeCl_3 - Cl \longrightarrow PhGeCl_3 \qquad (31)$$

$$PhCl + SiCl_3 \longrightarrow \begin{array}{c} Cl \\ SiCl_3 & -Cl \end{array} PhSiCl_3$$
 (32)

$$PhCl + :SiCl_2 \longrightarrow PhSiCl_3$$
 (33)

The decomposition of Si₂Cl₆ (see reaction (1)) starts at 380-400 °C.⁴ The insertion of :SiCl₂ into the Ge-Cl bond of germanium tetrachloride results in the formation of compound 24,²⁶ which is very labile and decomposes rapidly in reactions (27)-(29).

Reaction (27) is shown²⁷ to be exothermic $(\Delta H^{\circ}_{298}(g) = -174 \text{ kJ mol}^{-1})$, and reaction (29) is endothermic $(\Delta H^{\circ}_{298}(g) = 8.9 \text{ kJ mol}^{-1})$. The Polanyi—Semenov equation²⁸ is evidently appropriate for reactions (27)—(29) occurring *via* the free-radical or concerted mechanism. It follows from this equation that the activation energy for the exothermic reaction is lower than that for the endothermic or thermoneutral reac-

Table 3. Synthesis of PhGeCl₃ by the reaction of GeCl₄ with PhCl in the presence of Si_2Cl_6 (the reaction duration is 30-35 s)²⁷

T	GeCl ₄ : PhCl: Si ₂ Cl ₆ *	Conversion	Yield of	PhGeCl ₃	PhGeCl ₃ : PhSiCl ₃ *
/°C		of GeCl ₄ (%)	per starting GeCl ₄	per reacted GeCl ₄	
460	1.0 : 1.0 ; 0.5	57	6.54	11.5	16.2 : 1.0
500	1.0 : 1.0 : 0.5	60	7.65	12.8	11.3 : 1.0
550	1.0 : 1.0 : 0.5	62	16.4	26.4	9.8 : 1.0
550	1.0 : 1.0 : 1.0	71	41.1	57.9	4.7 : 1.0

^{*} Molar ratio

tion. When the values of the pre-exponential factors of the one-type processes (27)—(29) are close, this results in a situation in which the exothermic reaction (27) occurs with maximum rate. The rates of the thermoneutral (28) and endothermic (29) reactions are substantially lower. The :GeCl₂ that formed in reaction (27) reacts with PhCl via Eq. (30) to yield PhGeCl₃.

The 'SiCl₃ and 'GeCl₃ radicals generated in lesser amounts (reaction (29)) react with PhCl according to Eqs. (31) and (32). Trichlorophenylsilane can also be formed due to the insertion of :SiCl₂ into the PhCl molecule (reaction (33)). However, reactions (32) and (33) occur to a lesser extent, since the yield of PhSiCl₃ is 5–16-fold lower than that of PhGeCl₃ (see Table 3). The reactions of types (31) and (32) have been studied previously.^{29–31}

Dichlorosilylene obtained by the pyrolysis of 1,1-dichloro-1-silacyclopent-3-ene³² (25) can be used for the generation of :GeCl₂.

$$CH2=CH-CH=CH2 + :SiCl2 (34)$$
SiCl₂

Reaction (34) has previously been studied in detail.³³ The reaction of GeCl₄ with PhCl in the presence of silacyclopentene 25 at 550 °C affords PhGeCl₃ and PhSiCl₃ in 45.9 and 4.6% yields, respectively.³²

Synthesis of alkenylchlorogermanes

It has been shown^{34,35} that :GeCl₂ generated in reaction (27) can also be used in the synthesis of alkenyltrichlorogermanes if alkenyl chlorides (allyl chloride, ³⁴ methallyl chloride, ³⁴ and vinyl chloride³⁵) are used as reagents (Table 4).

The yields of alkenyltrichlorogermanes obtained at 500 °C range within 22-31%. However, alkenyltrichlorosilanes are also formed during the reaction, and their yields are insignificant in the case of vinyl chloride, but increase substantially in the reactions with allyl chloride or methallyl chloride (see Table 4).

Table 4. Synthesis of alkenyltrichlorogermanes in the reactions of $GeCl_4$ with alkenyl chlorides (RCl) in the presence of Si_2Cl_6 (500 °C)^a

RCI	Yield (%)		RGeCl ₃ : RSiCl ₃ b	Refer-
	RGeCl ₃	RSiCl ₃		ence
VinCl	30.9	4.8	6.44 : 1.0	35
AllCl	23.5	21.6	1.09:1.0	34
$C_4H_7Cl^c$	22.4	25, 5	0.87:1.0	34

[&]quot; Molar ratio of the starting reagents

The following scheme for the formation of alkenyltrichlorogermanes and alkenyltrichlorosilanes was suggested³⁴ (it is similar to that presented above for the reactions with chlorobenzene):

$$Si_2Cl_6 \longrightarrow :SiCl_2 + SiCl_4$$
 $GeCl_4 + :SiCl_2 \longrightarrow SiCl_4 + :GeCl_2$
 $\longrightarrow [Cl_3GeSiCl_3] \longrightarrow :SiCl_3 + :GeCl_3$
 $RCl + :GeCl_2 \longrightarrow RGeCl_3$ (35)

$$RCI + :SiCI_2 \longrightarrow RSiCI_3$$
 (36)

$$R = CH_2=CH$$
, $CH_2=CH$ — CH_2 , $CH_2=C(Me)$ — CH_2

Three additional products are formed during the synthesis of VinGeCl₃: trichlorochloroethylgermane (26), trichlorochloroethylsilane (27), and bis(trichlorosilyl)ethane 3 (0.3-4.1% yields).³⁵ The following scheme for the formation of compounds 3, 26, and 27 was suggested in the same work:³⁵

$$CH_2=CHCI + GeCI_3 \longrightarrow CI_3GeCH_2\dot{C}HCI$$
 (37)

28 + RH
$$\longrightarrow$$
 Cl₃GeCH₂CH₂CI + R (38)
26

$$CH_2$$
= $CHCI + `SiCI_3 \longrightarrow CI_3SiCH_2\dot{C}HCI$ (39)

29 + RH
$$\longrightarrow$$
 Cl₃SiCH₂CH₂CI + R' (40)
27

$$27 + :SiCl_2 \longrightarrow Cl_3SiCH_2CH_2SiCl_3$$

$$3$$
(41)

 $RH = CICHCH_2$, etc.

It is known^{37,38} that Si- and Ge-centered radicals readily add to double bonds affording radicals of types 28 and 29, which can abstract an H atom from other molecules to form compounds 26 and 27 (reactions (37)—(40)).

It is noteworthy that 'GeCl₃ and 'SiCl₃ radicals add to vinyl chloride at the methylene group (reactions (37) and (39)) contrary to Markovnikov's rule.

Dichlorosilylene is inserted into the C—CI bond of chlorosilane 27 to form compound 3. The reactions of type (41) have previously been considered in detail.⁸

The molar ratios of the RGeCl₃ and RSiCl₃ products formed in the reactions of GeCl₄ with AllCl, VinCl, and PhCl in the presence of Si₂Cl₆ are presented in Tables 3 and 4. It is of interest that this ratio depends on the stability of the C-Cl bond in the RCl used: the stronger

 $GeCl_4$: RCI: $Si_2Cl_6 = (1.5-2)$: 1:1.

^h Molar ratio.

^c Methallyl chloride.

this bond, the greater the RGeCl₃/RSiCl₃ ratio (1.09, 6.44, and 11.3 for AllCl, VinCl, and PhCl, respectively).

RCI	\mathcal{E}_{h}
	/kJ mol ⁻¹
AllCl	263.6 ³⁶
VinCl	338.9 36
PhCl	392.4 ¹⁰

This behavior agrees well with the kinetic analysis of the reactions of types (1), (27), (29), (35), and (36), which has been performed³⁴ for the reaction of GeCl₄ with allyl chloride in the presence of Si₂Cl₆.

The results presented demonstrate the considerable potentialities of the new method for syntheses of organogermanium compounds.

Synthesis of organochlorostannanes

We have shown the principal possibility of the thermal method for syntheses of other organoelement compounds as well, in particular, organylchlorostannanes, by insertion of :SiCl₂ into the Sn—Cl bond. It has been found³⁹ that when SnCl₄ is used in reaction (27) instead of GeCl₄, dichlorostannylenes can be obtained.

$$SnCl_4 + :SiCl_2 \longrightarrow [Cl_3Si-SnCl_3] \longrightarrow SiCl_4 + :SnCl_2$$
 (42)

The thermodynamic calculation shows that reaction (42) is exothermic ($\Delta H^{\circ}_{298}(g) = -220 \text{ kJ mol}^{-1}$).

Dichlorostannylenes formed in reaction (42) can be trapped by different reagents; for example, chloromethyl-dimethylchlorosilane was used³⁹ as the trapping reagent:

It should be mentioned that the pyrolysis of the SnCl₄ itself does not result in the formation of SnCl₂.

* * *

In conclusion one should note that the results presented in this review demonstrate the wide possibilities for using dichlorosilylene in the syntheses of organochloroderivatives of silicon, germanium, and tin. We succeeded in the use of the reactions of :SiCl₂ with alkyl and alkenyl chlorides for the synthesis of organosilicon compounds. It has also been established that the introduction of :SiCl₂ along with GeCl₄ or SnCl₄ into the reaction results in :GeCl₂ or SnCl₂ generation, which can be easily trapped by different reagents to form organogermanium or organotin compounds. Subsequent extension of the limits of using dichlorosilylene for the syntheses of heteroorganic compounds may be possible using halides of other elements along with GeCl₄ or SnCl₄ in the reactions.

References

- E. A. Chernyshev, N. G. Komalenkova, and S. A. Bashkirova, Usp. Khim., 1976, 45, 1782 [Russ. Chem. Rev., 1976, 45 (Engl. Transl.)].
- E. A. Chernyshev, N. G. Komalenkova, and S. A. Bashkirova, J. Organomet. Chem., 1984, 271, 129.
- 3. O. M. Nefedov, A. K. Mal'tsev, and V. A. Svyatkin, Izv. Akad. Nauk SSSR, Ser. Khim., 1974, 958 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1974, 23 (Engl. Transl.)].
- USSR, Div. Chem. Sci., 1974, 23 (Engl. Transl.)].
 4. V. G. Bykovchenko, V. I. Pchelintsev, N. G. Komalenkova, S. A. Bashkirova, and E. A. Chernyshev, Kinet. Katal., 1975, 16, 813 [Kinet. Catal., 1975, 16 (Engl. Transl.)].
- A. M. Mosin and Yu. Kh. Shaulov, Zh. Fiz. Khim., 1972, 46, 1834 [J. Phys. Ghem. (USSR), 1972, 46 (Engl. Transl.)].
- E. A. Chernyshev and N. G. Komalenkova, Usp. Khim., 1989, 58, 951 [Russ. Chem. Rev., 1989, 58 (Engl. Transl.)].
- E. A. Chernyshev and N. G. Komalenkova, *Usp. Khim.*, 1990, 59, 918 [Russ. Chem. Rev., 1990, 59 (Engl. Transl.)].
- E. A. Chernyshev, N. G. Komalenkova, I. A. Kapitova, and V. G. Bykovchenko, Zh. Obshch. Khim., 1995, 65, 1492 [Russ. J. Gen. Chem., 1995, 65 (Engl. Transl.)].
- E. A. Chernyshev, N. G. Komalenkova, I. A. Kapitova, and V. G. Bykovchenko, Zh. Obshch. Khim., 1995, 65, 1679 [Russ. J. Gen. Chem., 1995, 65 (Engl. Transl.)].
- Energii razryva khimicheskikh svyazei. Potentsiały ionizatsii i srodstvo k elektronu [Energy of Chemical Bond Cleavage. Ionization Potentials and Electron Affinity], Ed. V. N. Kondrat'ev, Nauka, Moscow, 1974, 351 pp. (in Russian).
- A. C. Baldwin, I. M. T. Davidson, and M. D. Reed, J. Chem. Soc., Faraday Trans. 1, 1978, 74, 2171.
- E. A. Chernyshev, N. G. Komalenkova, V. G. Bykov-chenko, and I. A. Kapitova, Zh. Obshch. Khim., 1995, 65, 436 [Russ. J. Gen. Chem., 1995, 65 (Engl. Transl.)].
- E. A. Chernyshev, N. G. Komalenkova, I. A. Kapitova, and V. G. Bykovchenko, Zh. Obshch. Khim., 1996, 66, 1141 [Russ. J. Gen. Chem., 1996, 66 (Engl. Transl.)].
- E. A. Chernyshev, N. G. Komalenkova, and S. A. Bashkirova, Zh. Obshch. Khim., 1976, 46, 1286 [J. Gen. Chem. USSR, 1976, 46 (Engl. Transl.)].
- D. Seibt and H. Heydtman, Z. phys. Chem. (BRD), 1973, 83, 256.
- V. N. Antonov, A. A. Zalikin, and V. I. Rozhkov, Zh. Prikl. Khim., 1985, 58, 1843 [J. Appl. Chem. (USSR), 1985, 58 (Engl. Transl.)]
- E. A. Chernyshev, N. G. Komalenkova, I. A. Kapitova,
 V. G. Bykovchenko, N. N. Khromykh, and V. N. Bochkarev, Zh. Obshch. Khim., 1996, 66, 1484 [Russ. J. Gen. Chem., 1996, 66 (Engl. Transl.)].
- E. A. Chernyshev, N. G. Komalenkova, I. A. Kapitova, V. G. Bykovchenko, N. N. Khromykh, and V. N. Bochkarev, Zh. Obshch. Khim., 1997, 67, 1105 [Russ. J. Gen. Chem., 1997, 67 (Engl. Transl.)].
- E. A. Chernyshev, N. G. Komalenkova, I. A. Kapitova, V. G. Bykovchenko, N. N. Khromykh, and V. N. Bochkarev, Zh. Obshch. Khim., 1997, 67, 803 [Russ. J. Gen. Chem., 1997, 67 (Engl. Transl.)].
- R. T. Conlin, J. C. Netto-Ferreira, S. Zhang, and J. C. Scaiano, Organometallics, 1990, 9, 1332.
- W. Ando, Y. Hamada, A. Sekiguichi, and K. Ueno, Tetrahedron Lett., 1982, 23, 5323.
- E. A. Chernyshev, N. A Mudrova, T. L. Krasnova, T. N. Tarasova, and A. E. Chernyshev, Zh. Obshch. Khim., 1987, 57, 1275 [J. Gen. Chem. USSR, 1987, 57 (Engl. Transl.)].

- M. M. Gilburd, F. B. Moin, and V. U. Shevchuk, Kinet. Katal., 1966, 7, 157 [Kinet. Catal., 1966, 7 (Engl. Transl.)].
- Yu. M. Zhorov, Kinetika promyshlennykh organicheskikh reaktsii [Kinetics of Industrial Organic Reactions], Khimiya, Moscow, 1989, 183 (in Russian).
- V. F. Mironov, V. V. Shcherbinin, N. A. Viktorov, and V. D. Sheludyakov, *Dokl. Akad. Nauk SSSR*, 1975, 222, 364 [Dokl. Chem., 1975 (Engl. Transl.)].
- E. A. Chernyshev, N. G. Komalenkova, and G. N. Yakovleva, Dokl. Akad. Nauk, 1994, 336, 69 [Dokl. Chem., 1994 (Engl. Transl.)].
- E. A. Chernyshev, N. G. Komalenkova, G. N. Yakovleva, and V. G. Bykovchenko, Zh. Obshch. Khim., 1995, 65, 1869 [Russ. J. Gen. Chem., 1995, 65 (Engl. Transl.)].
- A. S. Dneprovskii and T. I. Temnikova, Teoreticheskie osnovy organicheskoi khimii [Theoretical Fundamentals of Organic Chemistry], Khimiya, Leningrad, 1979, 225 pp. (in Russian).
- A. D. Petrov, E. A. Chernyshev, and Guan-lian Li, Dokl. Akad. Nauk SSSR [Dokl. Chem.], 1961, 137, 876 (in Russian).
- M. T. Davidson, C. Eaborn, and C. J. Wood, J. Organomet. Chem., 1967, 10, 401.
- E. A. Chernyshev, V. G. Bykovchenko, G. K. Sul'zhenko, and V. P. Rutkovskii, Kinet. Katal., 1978, 19, 1100 [Kinet. Catal., 1978, 19 (Engl. Transl.)].

- E. A. Chernyshev, N. G. Komalenkova, G. N. Yakovleva,
 V. G. Bykovchenko, N. N. Khromykh, V. N. Bochkarev,
 and V. V. Shcherbinin, Zh. Obshch. Khim., 1997, 67, 1830
 [Russ. J. Gen. Chem., 1997, 67 (Engl. Transl.)].
- E. A. Chernyshev, S. A. Bashkirova, N. G. Komalenkova, M. Ya. Kel'man, and V. N. Bochkarev, Dokl. Akad. Nauk SSSR, 1984, 276, 1151 [Dokl. Chem., 1984 (Engl. Transl.)].
- E. A. Chernyshev, N. G. Komalenkova, G. N. Yakovleva,
 V. G. Bykovchenko, N. N. Khromykh, and V. N. Bochkarev, Zh. Obshch. Khim., 1997, 67, 955 [Russ. J. Gen. Chem., 1997, 67 (Engl. Transl.)].
- E. A. Chernyshev, N. G. Komalenkova, G. N. Yakov-leva, V. G. Bykovchenko, N. N. Khromykh, V. N. Bochkarev, and V. V. Shcherbinin, Zh. Obshch. Khim., 1997, 67, 1833 [Russ. J. Gen. Chem., 1997, 67 (Engl. Transl.)].
- V. I. Vedeneev and V. V. Voevodskii, Zh. Fiz. Khim. [Sov. J. Phys. Chem.], 1956, 30, 789 (in Russian).
- 37. H. Sakurai, J. Organomet. Chem. Libr., 1981, 12, 267.
- 38. A. Alberti, Rev. Chem. Intermediates, 1987, 8, 207.
- E. A. Chernyshev, N. G. Komalenkova, V. I. Shiryaev,
 I. A. Kapitova, and E. A. Kovaleva, VI Vseros. konf. po metalloorganicheskoi khimii, Tez. dokl. [VI All-Russ. Conf. on Organometallic Chemistry, Abstrs.], Nizhnii Novgorod, 1995, 36 (in Russian).

Received October 10, 1997; in revised form January 16, 1998